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NONISOTHERMAL MOTION OF A RAREFIED GAS IN A SHORT PLANAR 

CHANNEL OVER A WIDE RANGE OF KNUDSEN NUMBER 

F. M. Sharipov, V. D. Seleznev, and A. M. Makarov UDC 533.6.011.8 

Results are presented from a calculation of two-dimensional nonisothermal mo- 
tion of a rarefied gas in a short planar channel. Calculations were performed 
for two different temperature distributions along the channel wall. Kinetic 
coefficients are calculated and the Onsager relationships are verified. Ther- 
momolecular pressure difference indices are found. 

A brief overview of studies on motion of rarefied gases in finite length channels was 
presented in [i], whence it follows that practically all studies in that field have been 
limited to consideration of isothermal gas flow. Until the present nonisothermal flow has 
been considered only in an infinite channel. Thus, the study of nonisothermal gas flows 
in finite channels is of practical interest. 

We will consider a planar channel of length s height a, and infinite in the z-direc- 
tion, as shown in Fig. i, joining two infinite vessels containing one and the same gas. At 
sufficient removal from the channel within the vessels the gas is maintained under equilib- 
rium conditions at pressures Pl and P2 and temperatures TI and T 2. The equilibrium distri- 
bution functions have absolute Maxwell forms: 

[~ = P~ ( m i 3'~ ( ~2 1 kTi 2a-kTi exp 2kTz , i = 1, 2. (1 )  
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Fig. i. Problem geometry. 

The walls of each vessel (i.e., the barrier) are at temperatures T I and T 2, respective- 
ly. Along the channel walls there is a temperature distribution Tw(x) = T l + Tw(x)(T 2 -- TI) , 
where ~w(X) is a specified function. It is assumed that upon interaction with the walls all 
molecules reflect diffusely, and that pressure and temperature heads are small, IP2 - PI[/ 
PI << i, [T 2 - TII/T I << i. It is necessary to find the flow field and mass and heat fluxes 
at arbitrary Knudsen numbers. In parallel with this task, which we will refer to below as 
problem No. i, we will consider the case where preinput regions are absent, and on the 
channel faces conditions of the following form are given: at x = 0, c x e 0, f = fl; at x = 
L, c x ~ 0, f = f2. Such a formulation will be referred to as problem No. 2 below. Compari- 
son of the results of problems Nos. 1 and 2 will permit determining the role of the preinput 
regions in gas flow formation. 

For an exact solution of the problem formulated Boltzmann's equation must be used, but 
for arbitrary gas rarefaction the complex structure of the collision integral will not per- 
mit such an approach. Therefore, a third order model equation (S-model) was used, insuring 
an adequate description of heat and mass transport simultaneously. This equation has the 
form [2]: 

of P 
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where I is the molecular free path length. 

We introduce the following dimensionless quantities: c= (m/2kT1)I/2v, u'= (m/2kTl)I/2u for 
velocities of molecules and gas, respectively, q'= [0,Snlm(2kTa/m)3/2]-lq for the heat flux den- 

sity, x '=x/a,  g '=g/a  f o r  c o o r d i n a t e s ,  J~ =(m/2kT1)l/2/(knia)fh, A~l=(m/2kT1)l /2/(knla)Am f o r  
thermodynamic fluxes and kinetic coefficients. In further calculations we will omit the 
primes from symbols for dimensionless quantities. 

In the case of small pressure and temperature heads the unknown distribution function 

can be written in the form 

where fl is defined by Eq. (i). 
S-model 

f(r, c ) = / 1 U + h ( r ,  c)], Iht<( 1, (3) 

S u b s t i t u t i n g  Eq. ( 3 )  i n t o  Eq. ( 2 ) ,  we o b t a i n  a l i n e a r i z e d  

Oh 
- -  = L~h, (4 )  c Or 
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where 6 = ~/7a/21 is the rarefaction parameter, 

[{~; n; ~, q ] =  .i [lh - ~ -  c2; c; 3 c 2 - I ;  c c 2 -  25 

Here % = (P - PI)/Pz; z = (T - Tz)/T z. To solve kinetic equation (4) we use the integral- 
moment method, with the aid of which we obtain a system of integral equations for the mo- 
ments of the distribution functions: 

6 2~ s o 2~ 

a ,t Ki~ (r, r') M3 (r') dsdcp @ .. ~I , ' 
/=I 0 0 0 

where I~i~6, r'= (x', g') = (x--s cos ~, g--s sin ~), s o is the distance from the observation point 
to the boundary of the flow field in the direction --(c~+cv). Here we have introduced the 
notation Ml=O(r), M2=ux(r), Ma=uv(r), M4=,(r], Ms=qx(r), M~=qy(r). The procedure of deriving 
integral equations of the form of Eq. (5) was described in detail in [I], so that the cum- 
bersome expression for Kij and ~i will be omitted here. The Krylov-Bogolyubov method [3], 
easily extensible to a system of two-dimensional integral equations, was used to solve the 
system. 

In numerical calculations two forms of temperature distribution along the channel walls 
were used: 

x - ]0, x < L / 2  
. . . . .  ~ TLC~ 

~ - -  L I1, x > L / 2 ,  L = l / a .  

I n  t h e  f i r s t  c a s e  t h e  c h a n n e l  w a l l  t e m p e r a t u r e  c h a n g e s  l i n e a r l y  f rom Tz t o  Y2, w h i l e  in  t h e  
s e c o n d  t h e  t e m p e r a t u r e  o f  one h a l f  o f  t h e  c h a n n e l  i s  e q u a l  t o  Yl ,  t h a t  o f  t h e  o t h e r ,  T 2. I n  
b o t h  p r o b l e m s  (Nos .  1 and 2) one can  i n t r o d u c e  t h r e e  i n d e p e n d e n t  t h e r m o d y n a m i c  f o r c e s  Xp = 
~P /P1 ,  XT = ~T/Tz ,  X~ = 6T/Tx.  Here~AT c o r r e s p o n d s  t o  t h e  t e m p e r a t u r e  head  w i t h  d i s t r i b u -  
t i o n  Xw, and AT t o  t h e  d i s t r i b u t i o n  z w. As was shown in  [ 4 ] ,  t h e  t h e r m o d y n a m i c  f l u x e s  in  
p r o b l e m s  Nos.  1 and 2 h a v e  one and t h e  same fo rm and w i t h  c o n s i d e r a t i o n  o f  t h e  s c a l e  f a c t o r s  
i n t r o d u c e d  can  be w r i t t e n  in  t h e  f o l l o w i n g  manner :  

1/2 

JP "~ -- .i' uxdg' 
-1/2 

1/2 L y = l  

--i/2 0 /2 

1/2 L I/2 

4 = -  ,[ 
--1/ '2 L/2 --I/2 

To transform the expressions J~ to their final form we use the law of conservation of 
energy in the right half of the channel. The quantity Jp has the sense of a volume mass 
flux per unit channel width. The quantities JT and J~ consist of two terms: The first cor- 
responds to the thermal flux through the channel input section, while the second is reZated 
to the thermal flux through the channel wall, integrated over the entire length with a 
weight dependent on the temperature distribution. Only with such a choice of thermodynamic 
fluxes will the entropy production have the form o=~/kXh, k=P, T, T, which is obtainea in 

h 

linear nonequilibrium thermodynamics [5]. 

We expand the moments of the distribution function into components: 

~ = ~ P X p + ~ T X T + ~ V X T '  u = u P X p q - u T X T + u T X ~ '  (7 )  

T =- TPxp '~TTXT + T ~ X ~ ,  q = qPXp-?qVXr--~-q~X~. 
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Fig. 2. Kinetic coefficients 
(dimensionless) vs inverse 
Knudsen number 8 (dimension- 
less) for various channel 
lengths. Solid line, problem 
No. i; dashed, problem No, 2. 

Substituting Eq. (7) into Eq. (6), we obtain the linear dependence of the thermodynamic 
fluxes Jn on the thermodynamic forces Xk: 

J ~ = ~  A~hX ., n, k = P ,  T, T. 
h 

The k i n e t i c  c o e f f i c i e n t s  hnk w i l l  h a v e  a fo rm a n a l o g o u s  t o  t h e  c o r r e s p o n d i n g  f l u x  J n ,  where  
in  s  o f  t h e  moments  u and q t h e r e  w i l l  a p p e a r  t h e i r  componen t s  w i t h  s u b s c r i p t  k (k = P, 
T, T) .  For  t h e  n o n d i a g o n a l  k i n e t i c  c o e f f i c i e n t s  hkn t h e  Onsage r  r e l a t i o n s h i p ~  

A p T = A T p ,  A p ~ = A ~ p ,  A T ~ = A ~ r  (8 )  

a r e  v a l i d .  These  r e l a t i o n s h i p s  can  be o b t a i n e d  f rom g e n e r a l  c o n s i d e r a t i o n s  o f  t h e  l i n e a r  
t h e r m o d y n a m i c s  o f  i r r e v e r s i b l e  p r o c e s s e s  [ 5 ] .  I t  was shown in  [4] t h a t  f o r  t h e  s y s t e m  con-  
s i d e r e d  r e l a t i o n s h i p s  (8 )  a r e  t h e  c o n s e q u e n c e  o f  t h e  s e l f - c o n j u g a t e  n a t u r e  o f  t h e  l i n e a r i z e d  
B o l t z m a n n  c o l l i s i o n  o p e r a t o r  and t h e  r e c i p r o c i t y  o f  t h e  s c a t t e r i n g  i n t e g r a n d s  f o r  gas  m o l e -  
c u l e s  on t h e  c h a n n e l  and  v e s s e l  w a l l s .  D i f f u s e  s c a t t e r i n g  i n s u r e s  s a t i s f a c t i o n  o f  t h e  s e c -  
ond c o n d i t i o n .  I n  t h e  k i n e t i c  e q u a t i o n  in  p l a c e  o f  t h e  e x a c t  c o l l i s i o n  o p e r a t o r  we u s e  t h e  
model  L s .  I t  can  e a s i l y  be  shown t h a t  t h e  o p e r a t o r  L s i s  a l s o  s e l f - c o n j u g a t e ,  so  t h a t  i t s  
u s e  in  p l a c e  o f  t h e  e x a c t  o p e r a t o r  i n s u r e s  s a t i s f a c t i o n  o f  Eq. ( 8 ) .  

We w i l l  c o n s i d e r  b r i e f l y  t h e  p h y s i c a l  mean ing  o f  e a c h  k i n e t i c  c o e f f i c i e n t .  The quan-  
t i t y  App c o r r e s p o n d s  t o  mass  t r a n s p o r t  u n d e r  t h e  i n f l u e n c e  o f  t h e  p r e s s u r e  head  o r  beyond  t h e  
P o i s e u i l l e  f l o w .  The c o e f f i c i e n t s  ATT and h ~  c o r r e s p o n d  t o  h e a t  t r a n s p o r t  u n d e r  t h e  a c t i o n  
o f  t h e  t e m p e r a t u r e  h e a d  f o r  l i n e a r  and s t e p l i k e  d i s t r i b u t i o n s  a l o n g  t h e  c h a n n e l  w a l l ,  r e s p e c -  
t i v e l y .  The c o e f f i c i e n t s  ApT and hp~ c o r r e s p o n d  t o  mass  t r a n s p o r t  u n d e r  t h e  i n f l u e n c e  o f  
t h e  t e m p e r a t u r e  h e a d ,  i . e . ,  t h e r m o c r e e p ,  f o r  t h e  v a r i o u s  t e m p e r a t u r e  d i s t r i b u t i o n s  on t h e  
c h a n n e l  w a l l s .  

The c o e f f i c i e n t s  hTp and h~p c o r r e s p o n d  t o  h e a t  t r a n s p o r t  u n d e r  t h e  i n f l u e n c e  o f  t h e  
p r e s s u r e  h e a d ,  i . e . ,  t o  t h e  m e c h a n o c a l o r i c  e f f e c t ,  and a c c o r d i n g  t o  Eq. ( 8 ) ,  a r e  e q u a l  t o  
ApT and hp~, respectively. We note that the coefficients ATp and h~p can be calculated in 

872 



/ -oz/ 

T 

IL__ 
0 o.'o/ ~97 

Fig. 3. Velocity profiles at L = 5 and 6 = 2 
for problem No. 1 in various sections. Solid 
line, x = 0; dashes, x = L/2. 

terms of one and the same thermal flux density field qP. In both cases the thermal fiiux is 
taken in the channel input section, while the flux density on the lateral surface is :~nte- 
grated with the linear or stepped temperature distribution, respectively. The stepped dis- 
tribution ~w permits expression of the coefficient A~p in terms of the thermal flux in the 
mean channel section. 

The sense of AT~ and A~T is that one can be calculated in terms of the thermal flux 
density field created by the temperature head with distribution Tw, but the integral c, ver 
the lateral surface is taken with a weight T w. The other coefficient, on the other h~nd, 
is calculated in terms of the field created by 6T with distribution Tw, but weight T w. 

The calculations were performed to within an accuracy of 2%, for two channel lengths, 
L = 1 and 5, for a range of numbers 6 from 0.02 to 2 in problem No. 1 and 0.02 to 8 for 
problem No. 2. The calculation accuracy was monitored by comparing results of calculations 
on different grids. In all cases reciprocity relationships (8) were satisfied within the 
limits of experimental error, as well as the conservation laws for particles and energF. 

Figure 2 shows the dependence of kinetic coefficients on the number ~. All coeffi- 
cients except App decrease in modulus with increase in 6. It is evident from Fig. 2a that 
at short lengths L and large numbers 6 the coefficient App of problem No. 1 differs greatly 
from the same coefficient of problem No. 2. For the kinetic coefficient ApT corresponding 
to thermocreep with linear temperature distribution the difference between the two proiDlems 
is insignificant. For example, at L = 5 and ~ = 2 this difference comprises 5%. The lif- 
ference between the coefficients Ap~ in problems Nos. 1 and 2 is somewhat larger, comprising 
16% for the same L and ~. 

It is interesting to compare thermocreep values for each problem separately for the 
different temperature distributions along the channel wall ~w and ~w" In problem No. L 
this difference proved to be quite small: at L = 5 and 6 = 2 it comprised 3%, which exceeds 
the calculation uncertainty only insignificantly. This might raise doubts as to the e:~{is- 
tence of a dependence of thermocreep on the channel wall temperature distribution. If we 
analyze the structure of the coefficient ATp , which according to Eq. (8) is equal to ApT, 
then it is evident that in the second term of the integral we have the product of the :flux 
on the wall q PJy=l 2 and the temperature distribution ~ . In the absence of heat exchange 
between the g~s =nd/wall qyPJy-i/2 = 0 the second term v~nishes, and thus, so does the 
thermocreep LpT produced by T w. But, as analysis of numerical results shows, in the pres- 
ence of such heat exchange the contribution of the second term to kinetic coefficient ATp" 
in problem No. 1 comprises 8% at L = 5 and 6 = 2, which significantly exceeds the calc~Lla- 
tion uncertainty. Thus, by varying ~w, one can change the value of ATp and consequently, 
the value of the thermocreep ApT. This indicates that a dependence of thermocreep on the 
temperature distribution along the channel walls exists, although it is weak. In problem 
No. 2 this dependence appears to a greater degree. At L = 5 and 6 = 2 the difference be- 
tween the coefficients ApT and Ap~ comprises 14%, and increases with increase in ~. 

It is evident from Fig. 2b that the coefficient ATT depends significantly on channel 
length. For small lengths L and large 6 this coefficient differs in problems Nos. 1 and 2. 
On the other hand, the coefficient A~ depends weakly on channel length and differs only 
slightly between problems Nos. 1 and 2. 
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TABLE I. TPD Index vs Number 6 

0 
0,02 
0,04 
0,1 
0,2 
0,4 
1 
2 

L=I 

0,5 
0,489 
0,480 
0,456 
O, 425 
0,376 
0,284 
0,196 

0,5 
O, 488 
O, 480 
0 ;456 
O, 425 
O, 376 
0,284 
0,195 

L = 5  

~[22 

0,5 
0,486 
O, 475 
0,443 
O, 408 
0,353 
O, 259 
0,181 

0,5 
0,486 
O, 475 
0,444 
0,409 
0,352 
0,255 
O, 176 

The coefficients ATe, A~T are not shown on the graph. Their values themselves are not 
of great practical interest, but their equality to each other is an additional criterion of 
the accuracy of the solution. The dependence of AT~ on number 6 is analogous to that of 

ATT. 

Thus, presence or absence of a preinput region has a significant effect on the 
value of the kinetic coefficients App, ATT and AT~ = A~T. 

Figure 3 shows profiles of gas velocity in various channel sections at L = 5 and 6 = 2 
for problem No. i. The velocities UxP and uxT show slight changes. The velocity uxT , pro- 
duced by the stepped temperature distribution, changes significantly. In the central chan- 
nel section the velocity uxT has a maximum near the wall and a minimum in the center of the 
channel. With decrease in channel length and number 6 all three profiles equalize. In 
problem No. 2 the profiles are analogous to problem No. i, therefore they are not shown 
graphically. 

We will now consider the effect of thermomolecular pressure difference (TPD). Let the 
vessels which the channel connects have quite large, but finite volumes. Let different tem- 
peratures T I and T 2 be maintained in the vessels with some temperature distribution on the 
channel walls. Then aside from the heat flux there develops in the system a mass creep - 
thermocreep, directed from the "cold" vessel to the "hot." Since satisfaction of nonpene- 
tration conditions on the vessel walls is assumed, i.e., the absence of drains, the thermo- 
creep leads to an increase in pressure in the "hot" vessel and decrease therein in the 
"cold" one. This in turn stimulates a Poiseuille flow. The pressure difference will in- 
crease until the Poiseuille flow compensates the thermocreep. The system then reaches a 
steady state. In this case the pressure in the vessels Pl and P2 will be related to the 
temperatures T 1 and T 2 by the expression 

P2 \ T2 / 

Making use  o f  t h e  s m a l l n e s s  o f  t h e  p r e s s u r e  and t e m p e r a t u r e  h e a d s ,  f o r  t h e  TPD index  i t  i s  
s i m p l e  t o  o b t a i n  t h e  e x p r e s s i o n  y = -ApT/App. In  t h e  f r e e  m o l e c u l a r  r eg ime  (~ = O) w i t h  
diffuse scattering in channels of any length, any section, and with any temperature dis- 
tribution on the channelwalls the TPD index is equal to 0.5. We note that in experiments 
in round channels [6] in the free molecular regime deviations from 0.5 were observed. This 
can be explained by nondiffuse reflection of molecules in the experiments performed [6]. 

Table I shows numerical values of the TPD index, from which it is evident that its val- 
ue decreases with increase in number 6 and channel length L. There is practically no dif- 
ference in 7 values for the different temperature distributions along the channel walls. 
This is related to the weak dependence of thermocreep ApT upon T w. But, as was shown above, 
this dependence does exist, and thus, there is also a dependence of the TPD index on tem- 
perature distribution along the channel walls. 

Analysis of the temperature and pressure fields shows that in the range of numbers 6 
considered the following inequalities are valid: 

I~rlG0,02; I~I<~0,1; I~PI~<0.05, 
Where t h e  q u a n t i t i e s  8 T, sT, and sP a r e  d e f i n e d  in  Eq. ( 7 ) .  Th i s  means t h a t  gas  m o t i o n  
under the influence of a temperature head can to a high degree of accuracy be regarded as 
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isobaric, while gas motion under the action of a pressure head may be considered isothermal. 
Without performing calculations, this conclusion is not obvious for a rarefied gas. 

NOTATION 

~, channel length; a, channel height; P, pressure; T, temperature; f, distribution 
function; m, molecular mass; k, Boltzmann's constant; v, molecular velocity; x, y, z~ coor- 
dinates; Tw, relative wall temperature; r dimensionless molecular velocity; L = ~/~, di- 
mensionless channel length; D, dynamic gas viscosity; w, dimensionless thermal molecular 
velocity; u, gas velocity; n, gas density; q, thermal flux density; Jk, thermodynamic flux; 
Akn, kinetic coefficient; Xk, thermodynamic force; h, disturbance function; Lsh, col~ision 
operator; @, relative gas pressure; T, relative gas temperature; 6, rarefaction parameter; 
y, TPD index. 
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ACTION OF THE HALL EFFECT ON FLOW AND HEAT TRANSPORT 

IN A CONDUCTIVE GAS FLOW NEAR A ROTATING DISK 

V. D. Borisevich and E. P. Potanin UDC 532.526.75:533.95:537.84 

The action of the tensor character of medium conductivity upon flow and heat 
transport in the boundary layer on a rotating disk is studied in the presence 
of an axial magnetic field and various directions of the angular velocity 
vector. 

In an analysis of an MHD-boundary layer on a rotating disk [i] proposed an appro~:imate 
method for integrating the nonlinear equations of motions, involving averaging of inertial 
terms over layer thickness. A modification of that method was later successfully used to 
calculate hydrodynamic and thermal boundary layers near a rotating disk with exhaust and 
draft of the medium through the porous surface of the body flowed over in the presence or 
absence of an external magnetic field [2-5]. Comparison of the moments of the friction 
forces and thermal fluxes calculated on the basis of the approximate and numerical methods 
revealed good agreement. In the present study the method of partial consideration of iner- 
tial terms will be used to determine flow and heat transport in a flow of conductive gas 
in the boundary layer on a rotating disk in the case where Hall phenomena play a significant 
role. 

We will consider the motion of a viscous conductive gaseous medium near an infinite di- 
electric disk rotating at constant angular velocity ~ about the z axis in an external homo- 
geneous axial magnetic field B. Neglecting the induced magnetic field, the system of ~ydro- 
dynamic equations of the boundary layer with consideration of electromagnetic forces has the 
form 
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